Datasets list
These are datasets, gene expressions from Affymetrix microarrays, previously uploaded by a logged user.
Click on Details to see aditional information about the selected dataset.
From there you can explore the Gene Expression among the different data preprocessing.
Translating Dosage Compensation to Trisomy 21
Details
49395 genes x 27 experiments
Description:
Down syndrome is a common disorder with enormous medical and social costs, caused by trisomy for Chr21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected in DS patient stem cells by manipulating a single gene, XIST. Using zinc finger nucleases, we targeted a large, inducible XIST transgene into the Chr21 DYRK1A locus, in DS pluripotent stem cells. XIST RNA coats Chr21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a “Chr21 Barr Body.” This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. In this study, we used microarrays to understand the genome-wide impacts of inducible XIST expression on Chr21 in trisomy 21 human iPS cell lines, and to evaluate the extent of Chr21 silencing trisomic samples versus a disomic male iPS cell line.
Down syndrome is a common disorder with enormous medical and social costs, caused by trisomy for Chr21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected in DS patient stem cells by manipulating a single gene, XIST. Using zinc finger nucleases, we targeted a large, inducible XIST transgene into the Chr21 DYRK1A locus, in DS pluripotent stem cells. XIST RNA coats Chr21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a “Chr21 Barr Body.” This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. In this study, we used microarrays to understand the genome-wide impacts of inducible XIST expression on Chr21 in trisomy 21 human iPS cell lines, and to evaluate the extent of Chr21 silencing trisomic samples versus a disomic male iPS cell line.
Species:
Homo Sapiens
Homo Sapiens
Input data type:
Microarray, PrimeView
Microarray, PrimeView
[Chr21]Translating Dosage Compensation to Trisomy 21
Details
610 genes x 27 experiments
Description:
Down syndrome is a common disorder with enormous medical and social costs, caused by trisomy for Chr21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected in DS patient stem cells by manipulating a single gene, XIST. Using zinc finger nucleases, we targeted a large, inducible XIST transgene into the Chr21 DYRK1A locus, in DS pluripotent stem cells. XIST RNA coats Chr21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a “Chr21 Barr Body.” This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. In this study, we used microarrays to understand the genome-wide impacts of inducible XIST expression on Chr21 in trisomy 21 human iPS cell lines, and to evaluate the extent of Chr21 silencing trisomic samples versus a disomic male iPS cell line.
Down syndrome is a common disorder with enormous medical and social costs, caused by trisomy for Chr21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected in DS patient stem cells by manipulating a single gene, XIST. Using zinc finger nucleases, we targeted a large, inducible XIST transgene into the Chr21 DYRK1A locus, in DS pluripotent stem cells. XIST RNA coats Chr21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a “Chr21 Barr Body.” This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. In this study, we used microarrays to understand the genome-wide impacts of inducible XIST expression on Chr21 in trisomy 21 human iPS cell lines, and to evaluate the extent of Chr21 silencing trisomic samples versus a disomic male iPS cell line.
Species:
Homo Sapiens
Homo Sapiens
Input data type:
Microarray, PrimeView
Microarray, PrimeView